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Fig. 11.—Comparison of cot 2x~C and (rj,p/C)~C plots 
of rabbit actomyosin solution. Data were taken from ref. 
26. 

a high degree of rigidity. I t is therefore of interest to test 
the applicability of the proposed equations to these macro-
molecular systems. As an example we will choose von Mu-
ralt and Edsall's pioneer work on actomyosin.26 In Fig. 11 
are plotted cot 2x against the concentration (assuming the 
protein contains 16% N) at two rates of shear (the lowest 
and the highest measurable R P M ) . Also included in the 
figure is the (tj8P/c)-c curve, the data of which were measured 

(26) A, von Muralt and J. T. Edsall, / . Biol. Ckem., 89, 375, 3.il 
(1930); J. T. Edsall, Trans. Faraday Soc, 26, 837 (1930). 

in an Ostwald viscometer presumably at very low rate of 
shear. The close similarity in the shape of both flow bire­
fringence (at low r.p.m.) and viscosity is self-explanatory. 
According to the original paper, the lower R . P . M . corre­
sponded to about D = 10 sec . - 1 and a ( = D/B) was close 
to 1. Although the actual rate of shear in the viscometer 
was not mentioned, the listed values seemed also to lie close 
to the Newtonian region. Thus the two curves were com­
parable at about the same range of rates of shear. The ap­
parently straight line obtained at a high r .p.m. was mostly 
certainly due to the sharp drop in k'M in eq. 5, since this 
protein exhibits extremely strong non-Newtonian viscosity 
at higher rates of shear. 

Bovine plasma albumin is another extreme case for illus­
tration. Due to its low asymmetry this protein can only be 
oriented in a highly viscous medium and at a very high con­
centration. Edsall and Foster27 had reported an estimated 
length of 190-200 A. for a 4 .48% (w./v.) solution in 
88.45% (w./w.) glycerol. At this concentration the ratio 
of (i7»p/e)/M was estimated to be about 1.4,28 using the 
viscosity data in aqueous solutions. Using eq. 12 one 
finds a calculated value of )7o©o/ T of 42 rather than the 
published value of 30. Consequently the estimated length 
of the ellipsoid should be close to 170 A., which is in 
better agreement with the currently accepted value of 
150 A. It seems highly desirable to reinvestigate this pro­
tein in several more concentrated solutions so that any scat­
tering in experimental points can be smoothed out. In fact, 
with our proposed equations it will be possible to extend the 
lower limit of flow birefringence technique, thus enabling us 
to study many proteins of very low asymmetry. Likewise, 
for those having very high asymmetry it is of pertinent im­
portance to determine the extent of concentration depend­
ence. These studies would certainly prove or disprove the 
general applicability of our proposed equations. 
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The exact analytical solutions to the rate equations for the reversible Michaelis-Menten mechanism are derived for the 
case that k\ = fo. The steady-state approximation is shown to be a good approximation if S0 ^>«o or if (e0 + So) *C (ki_ + 
h)/h. A perturbation solution is developed for the case that ki ^ ki and the applicability of the steady-state approximation 
for this case is discussed. 

Introduction 

Enzyme kinetic da ta frequently can be repre­
sented by the reversible Michael is-Menten mech­
anism 

ea 

ki kg 
+ s -^-*- x 7-*-

kl ki 

x S0 — p — x x e0 

E + P 

— xp 

(D 
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where E represents enzyme,3 S and P represent 
substrates, and X is the intermediate. The total 
molar concentration of enzyme is represented by 
eG and the initial concentration of substrate by S0. 
The concentrations of the intermediate and product 

(3) The symbol E actually represents the enzymatic site rather 
than the enzyme but generally the number of sites per molecule is un­
known. Letting E represent the enzyme rather than the enzymatic 
site so that «o represents the total molar concentration of the enzyme in­
creases the rate constants by a factor equal to the number of sites per 
molecule, assuming no site-site interaction. The mechanism is not re­
stricted to enzyme catalysis but might be applied to heterogeneous cata­
lysis, with E representing the sites on the surface of the solid. 
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at any time are represented by x and p, respec­
tively. The rate equations are therefore 
x = ijSoeo + {ki — ki)eop — [he0 + kiSo + 

(h - h)p + k2 + h]x + fe2 (2) 
p = (ks + kip) x — kteop (3) 

The steady-state rate equation for this mechanism, 
derived by Haldane4 for the case that s a » e0, is 

. _ k3eas/Ks — ktepp/Kp ... 
V 1 + S/KB + p/K? W 

where Ks and Kp are the Michaelis constants for 
the substrate and product, respectively, with Ks 
= (k2 + h)/ki and Kp — (&2 + k%)/k\. Chance6 

has obtained differential analyzer solutions for the 
case that ki = 0, and Yang6 has discussed a solu­
tion for this case using a reversion method. Vari­
ous approximate solutions have been discussed 
for the transient phase of the reaction when ki — 
0.7-10 In deriving these approximate solutions, 
the product concentration was considered to be 
negligible during the transient phase. However 
the complete analytical solution of equations 2 and 
3 has not been obtained. 

In the present paper the exact solution for the 
reversible Michaelis-Menten mechanism is derived 
for the case that ki = ki and a perturbation solution 
is developed for the case that k\ ^ &4. 

Exact Solutions when ki = h.—When h = h, 
rate equations 2 and 3 become, respectively 

X — kie0s0 — (kiSo + he0 + k2 + k3)x + kiX1 (S) 

p = (kz + ktp)x — ktfisp (6) 

Equation 5 is immediately integrable and upon ap­
plying the initial condition t = 0, x = 0 and rear­
ranging gives 

X d - b + (d + b)e-d> { ' 
where 

a = ki (8) 

b = -(/Mo + hs0 + k2 + ki) (9) 
c = kieoSt, (10) 

d = + (b2 - 4acY/* = 
[{he, + klSa + k2 + £3)

2 - 4*,%,]'/. (11) 
If equation 7 is substituted into equation 6, the 
resulting differential equation is linear in p but has 
non-constant coefficients. This equation, how­
ever, can be integrated by the method of variation 
of parameters and upon applying the initial condi­
tion t = 0, p = 0 and simplifying the following 
equation is obtained. 

( T _ **o(2An, + b - d)l-i _ kMZkiSp + b -

2kis0\d\_\ - e b ~ d J b - d 
P (k, + k3)[d - b + (d + b)e-"} 

If S0 » eo, d = —b and equations 7 and 12 be­
come 

* = I I 1 T _j_ u U - *-(*<* + *. + *»>/] (13) 
K1.S0 t «1 T * ! 

(4) J. B. S. Haldane, "Enzymes," Longmans, Green and Co., Lon­
don, 1930, p. 81. 

(5) B. Chance, J. Biol. Chem., IBl, 553 (1943). 
(6) C. Yang, Arch. Biochem. Biophys., Sl, 419 (1953). 
(7) H. Gutfreund, Disc. Faraday Soc, 20, 167 (1955). 
(8) K. J. Laidler, Can. J. Chem., 33, 1614 (1955). 
(9) M. F. Morales and D. E. Goldman, T H I S JOURNAL, 77, 6069 

(1955). 
(10) P. A. T. Swoboda, Biochim. el Biophys. AcIa, 23, 70 (1957). 

and 
p = ^TT3IL1 _ e *'» + *• + *_!-

Since equations 7 and 12 involve no approxima­
tions in their derivation, they give the concentra­
tion of intermediate and product exactly over the 
entire course of the reaction, including both the 
transient and steady-state phases. Before dis­
cussing the nature of these equations the signifi­
cance of the restriction that ki = k4 will be dis­
cussed. 

The condition that ki = ki is exactly the restric­
tion that the Michaelis constants for the sub­
strate and product must be equal. Enzyme reac­
tions that can be represented by mechanism 1 under 
given conditions and which have equilibrium con­
stants in the neighborhood of unity have been 
studied in both the forward and reverse direc­
tions.11'12 For the fumarase, enolase and phos-
phoglucose isomerase reactions13 it's = Kp at a 
pH which depends upon the buffer and ionic 
strength. 

For enzyme reactions where the equilibrium con­
stant is much greater than unity, i.e., the reaction 
goes "to completion," data for the Michaelis con­
stants of both the reactant and product are difficult 
to find in the literature. This in part appears to 
be due to a common practice which has developed 
among enzyme kineticists that if a reaction goes 
essentially to completion, it is assumed that ki = 
0. Obviously in this case a Michaelis constant for 
the product is meaningless. As has been pointed 
out,14 the condition for a reaction following mech­
anism 1 going to completion is that k\k% » k2ki and 
this puts no condition on ki. If k\ = k\, k%» ki 
would be sufficient to cause the reaction to go essen­
tially to completion. In many cases product in­
hibition could be explained by using mechanism 1 
rather than letting ki — 0 and adding a separate 
reaction to account for the inhibition. Product 
inhibition constants often have values very close to 
the Michaelis constant for the substrate,15 thus sug­
gesting that if mechanism 1 were used to interpret 
product inhibition calculated values of k\ and ki 
would be nearly equal. The restriction that has 
been used in deriving the equations is thus one that 
is met under particular conditions in some enzyme 
systems and may even be applicable to enzymatic 
reactions which essentially go to completion. 

,, > It is of interest to com-
- [1 - e-d>}\ pare equations 7, 12, 13 

• (12) and 14 with approximate 
equations obtained by others 

for the case where ki = 0. Equation 7 is identi­
cal (if 5, the average substrate concentration, 
is taken to be S0) with the equation derived by 

(11) R. M. Bock and R. A. Alberty, T H I S JOURNAL, 7«, 1921 
(1953). 

(12) F. Wold and C. E. Ballou, J. Biol. Chem., 227, 313 (1957). 
(13) K. K. Tsuboi, J. Estrada and P. B. Hudson, ibid., 231, 19 

(1958). 
(14) R. A. Alberty in P. D. Boyer, H. Lardy and K. Myrback, "The 

Enzymes," 2nd Ed., Academic Press, New York, N. Y., 1958. 
(15) R. J. Foster and C. Niemann, Proc. Natl. Acad. Set'., U. S., 39, 

999 (1953); H. T. Huang and C. Niemann, T H I S JOURNAL, 73, 1541 
(1951). 
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Laidler8 for the appearance of intermediate during 
the transient state. This similarity is expected 
since the initial appearance of intermediate should 
be independent of the value of &4. Whereas Laid-
ler's expression is only good for the transient state, 
equation 7 is exact for the entire course of the reac­
tion if ki = ki and x asymptotically approaches the 
steady-state or equilibrium value. 

For the additional condition that S0 » en, equa­
tions derived by Laidler8 and by Swoboda10 for the 
transient state appearance of intermediate are 
identical with equation 13 which is again to be ex­
pected as the value of ki is unimportant during the 
transient state. Gutfreund7 and Swoboda10 have 
also derived an expression for the appearance of 
product, which may be compared with equation 
14. The second term in the equations of Gutfreund 
and Swoboda is identical with the second term in 
equation 14 while the first term in their equation 
can be obtained from our first term by expanding 
the exponential term in a power series and keeping 
only the first two terms. An extrapolation of the 
linear (early steady state) region to obtain ki, as 
Gutfreund has suggested, must be made with con­
siderable caution. 

Terms involving e~dl in equations 7 and 12 are 
responsible for the initial rapid rise in x while 
terms arising from the first exponential term of 
equation 12 can be identified with the "steady 
state." The applicability of the steady-state ap­
proximation depends essentially on the relative 
values of d and [kie0(2kiSo + b — d)]/(b — d), and 
the larger the relative value of d becomes, the better 
the degree of approximation of x = 0. There are 
several ways in which the relative values of these 
quantities can be changed, one of which is to change 
the ratio of e0 to so. If S0 » eo, equation 12 sim­
plifies to equation 14, and the ratio of kiSo + k2 + 
ki to ki(ki + ki)e0/(hso + fa + k3) will always be 
greater than so/eo. The equation for the concen­
tration of product as a function of time derived us­
ing the steady state approximation is given by16 

p = WTT, L1 ~ e hs' + h + \l (15) 

which is identical with equation 14 except for the 
transient term. Equation 15 is that of a pseudo 
first-order reaction and a plot of — (1/eot) In (1 — 
p/pea) vs. t gives a straight line with zero slope; 
therefore any difference between the steady-state 
value of product and the actual value would be 
seen easily in this type of plot. 

Figure 1 illustrates the effect of varying the en­
zyme concentration while holding the substrate con­
centration constant. The values for the rate con­
stants are those calculated from steady-state 
kinetic data for the fumarase system at 25°, pH 
6.81, 0.1 ionic strength in tris-(hydroxymethyl)-
aminomethane acetate buffer containing 0.09 M 
NaCl.17 The initial substrate concentration, 1O-4 

M, was chosen to be approximately equal to the 
Michaelis constant, since this is in the range of sub-
trate concentrations where initial velocity studies 

(16) R. A. Alberty, W. G. Miller and H. F. Fisher, T H I S JOURNAL, 
79, 3973 (1957). 

(17) C. Frieden, R. Wolfe, Jr., and R. A. Alberty, ibid., T9, 1524 
(1957). 

usually are made. As the enzyme concentration 
is reduced, the value of — (1/eoO In (1 — P/pea) 
approaches the steady-state value more closely at 
smaller and smaller extents of reaction. When 
the enzyme concentration is 1O-4 times the sub­
strate concentration (curve D), the steady-state 
value is within 1% of the true value when the prod­
uct concentration has reached only 0.3% of its 
equilibrium value. But even at this concentration 
the fumarase reaction would occur too rapidly for 
ordinary initial velocity measurements to be made. 
As a rule experiments to measure "initial velocities" 
are arranged so that the reaction will be about 5% 
to its equilibrium value in five minutes or longer. 
In the case of fumarase this corresponds to an 
enzyme concentration of about 5 X 10 10 M. Us­
ing this concentration of enzyme and equations 13 
and 14, a simple calculation shows that at 10 - 3 

seconds x is within 0.001% of its steady-state value 
while the product concentration has reached only 
about 0.001% of its equilibrium value. This com­
pletely justifies the use of the steady-state approxi­
mation in the study of the fumarase reaction under 
the condition that the Michaelis constants are 
equal. 

Figure 2 illustrates the effect of varying the sub­
strate concentration while holding the enzyme con­
centration constant. Comparing curve A in Fig. 
1 with curve A in Fig. 2, it is evident that the 
steady-state assumption becomes a better approxi­
mation as both the enzyme and substrate concen­
trations become much smaller than the Michaelis 
constant, even if ea > s0. The values for —(1 / 
eot) In (1 — p/peq) in A and C have been multiplied 
by appropriate constants in order to make their 
steady-state values coincide with the steady-state 
value of B. The effect on the appearance of inter­
mediate of changing the initial substrate and en­
zyme concentrations is shown in Fig. 3. 

I t is thus seen that the steady-state approxi­
mation becomes better as eoAo becomes small or as 
e0 + S0 becomes smaller than (£2 + k%)/k\. The 
latter condition is sufficient even though sa = ea or 
even e0 > S0. It is of interest that the steady-state 
approximation can be applicable even though the 
concentration of substrate is not much larger than 
the concentration of enzyme. 

Approximate Solution for h ^ h.—The following 
discussion will be restricted to the case where 
S0 » e0. In this case S0 = 5 + p and rate equa­
tions 2 and 3 simplify to 
x = kis0ea + (ki — ki)e0p — \kiSo + k2 + k, + (kt — h)p]x 

(16) 

P = (ki + kiP)x - kte0p (17) 

Equations 16 and 17 are non-linear and have no 
known analytical solutions. To investigate the 
nature of a; as a function of time equation 16 is first 
differentiated with respect to time, to obtain 

X = (kt — kCieop + Ik1So + ki + ki + 

(ki - h)p]x + (h - h)xp (18) 

If x were to go through a maximum x = 0 and x 
< 0 at the maximum. Since p ^ 0, the only way 
that x can go through a maximum is for ki > ki.ls 

(18) M. F. Morales, in P. D. Boyer, H. Lardy and K. Myrbdelc, 
"The Enzymes," 2nd Ed., Academic Press, New York, N. Y., 1958. 

file:///kiSo
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CM-SEO. 

Fig. 1.—Kinetic plots at various enzyme concentrations 
with S0 = 10"* M: A, e0 = 10 ~* M; B, e„ = 10"« M; 
C, e0 = 10 "7 M; D, e0 = 1O-8 M. Values used for the rate 
constants are ki = kt = 7.9 X 108 JW-1 min."1 , h = 5.5 X 
104 min.- 4 and k, = 1.24 X 104 min . - 1 . The steady-state 
value is labelled s.s. The value of e<£ at which the product 
concentration is one per cent, of its equilibrium value is 
marked by a short vertical line. 

Thus as the ratio of ki to ki changes, an envelope of 
curves for x vs. t is obtained, with all curves for kx 
> ki going through a maximum and with no curves 
for ki > &i having a maximum, but instead ap­
proaching their maximum value asymptotically at 
infinite time.19 If x goes through a maximum for 
the forward reaction, it cannot for the reverse re­
action. A logical way to obtain solutions for ki 
9^ ki is to consider the desired solutions as pertur­
bations20 of the solution for k\ = ki. The desired 
solutions are then 

x — Xo + (ki — ki)xi -f- (ki — &i)2»2 + • • • • = 
CO 

E *«(h ~ W" (19) 
K = O 

n 
i . 

SE
C

 

2 
CO 

b 
X 

2.8 
SS 
2.4 

2.0 

1.6 

O 
O 
-I 

O- 1.2 

I I I 

e 0 i X IO8 (M S E O 

Fig. 2.—Kinetic plots at various substrate concentrations 
with e, = 10-« M: A, se = 10"» M; B, s„ = 10"« M; C, 
so = 1 0 - 3 M. The values of rate constants are the same as 
for Fig. 1. The steady-state value is labelled s.s. The 
value of e<t a t which the product concentration is one per 
cent, of its equilibrium value is marked by a short vertical 
line. 

(19) The same condition applies to general equation 2 where there 
is no restriction on the relative concentrations of enzyme and substrate. 

(20) R. Courant and D. Hilbert, "Methods of Mathematical 
Physics, I ," Interscience Publishers, New York, N. Y., 1953. 

0.004 
t (sec) . 

0.006 0.008 

Fig. 3.—Fractional approach to equilibrium for both 
intermediate (x) and product (p) for the values of the rate 
constants given for Fig. 1. Curves marked IA and IB were 
calculated using the same enzyme and substrate concentra­
tions as for curves A and B in Fig. 1; similarly curves 2A 
correspond with curve A in Fig. 2. The steady-state 
value is labelled s.s. Equations 7 and 12 were used in 
making the calculations. 

P = Po + (ki - kjpi + (kt - kypi + • • • • = 
CO 

E *»»(*« ~ *i)" (20) 
» = 0 

with Xo and po being the solutions of x and p, respec­
tively, when ki = ki. The quantities Xi and pi are 
the first-order perturbation terms, X2 and p\ the 
second-order perturbation terms, etc. The ex­
pression for Xo is given by equation 13 

kieoSo 
Xo = [1 - e"/K] (21) 

where /? = kiSo + k2 + ks and the equation for po is 

Po = [1 - e-<»] (22) 

E q u a -

ifeso ri _ - i i _ kik3St>eo 
Hh2 + h) l e J /3= 

where a = [ki(k2 + &3)eo]/(&iSo + &2 + k3) 
tion 22 differs from equation 14 in that in the deri­
vation of equation 12, ki is allowed to keep its 
identity wherever possible. 

To obtain x and p as functions of time equations 
19 and 20 and their first derivatives are substituted 
into equations 16 and 17 and the coefficient of each 
power of (ki — ki) is equated to zero. Thus, con­
sidering equation 19, the coefficient of the (ki — 
ki) term will be a first-order differential equation in 
Xi, the coefficient of (k\ — ki)2 involves Xt, etc. The 
coefficient of (ki — ki)n gives 

Xn + /3X„ = e0pn-l — E Pn-I- m Xm 

m = 0 
(n 1* 0) (23) 
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Pn + hieo — X0)Pn = kiXn + ki ^1 pn (n ^ 0) 

The homogeneous parts of both equations are the 
same as the corresponding homogeneous equations 
for Xo and pa, which have been integrated earlier.21 

Upon integration one obtains 

Xn = e~Pl 

Pn 

/ : 
K - I 

[eopn-i- Yl Pn-1-mXm]e& dt n ?* 0 
m = 0 

(25) 

/ : 
n 

klXn + i ( ^ Pn-mXm e<*1 dt n ?t 0 

(26) 

and thus the perturbat ion solutions are 

x = .T0 + £ < (k* ~ h)ne-f>' f [eop,t~i -

n — 1 

E p*-i-mxm] eV&t 
m =0 

/•; r 
kiXn + 

e"1 dt 

P = Pa+ E ( * « - hYe-ri f' 
« = 1 (. ^ 0 

n 

ki 2J Pn-

(27) 

(28) 

These equations all have the same initial condition 
t ha t Xn = pn = 0 when t = 0. Whether or not the 
above solutions can be used depends on the nature 
of their convergence. In principle they describe 
the course of x and p even for the case tha t ki —* 0. 

For both the enolase reaction12 and the fumarase 
reaction11 the Michaelis constants for the substrate 
and product are within a factor of 10 of each other 
at most pK values. Thus the only perturbation 
terms t ha t will be writ ten out explicitly here will be 
those terms needed for the case tha t 0.1 ^ k^/ki 
^ 10. 

The first two perturbation terms for x and p de­
rived from equations 25 and 26 are 

k]k3eos0 

WS2 

* - ^ ? [1 kM» e-"' ] + 

[1 - e-«'l 

2£i2&32so'eo 
'k?(h + k3)(S* 

(29) 

[%-«< -

Pi = 

/<2 = 

kjk^So _ 

kt*(ki + W 2 

ki2k3
2Slj 

ki(2kiSo + k2 + k3)(k-> + We11 _ 
2^1J01S 

£i&32£oSo(2£iS(i + &2 + W 

-«'] (30) 

UM + W<32 /«-«' 

W3 W(£: 
2^i2^,i 

T2~ 
2*i2^3St'oio2(2*iio 

/«-«' 

W(fe + W 2^ 
*?_+ W / e - w + 

U(M + k3)p 
kik3

3s0e0 

U(M + UV 
2 
- < z < 

-e~"t (31) 

[--
W A c ^ i i r K f e + WJ 

2W&2 + W 0' e " 

ktHk, W3/32 

(21) Equation 24 is more easily integrated if equation 7 is used for X0 

rather than equation 13 in the homogeneous part of equation 24, and 
the condition $Q ^§>eo is applied after the homogeneous equation isinte-
grated. 

'['-^>-' -3at — e~<*<] 

(32) 

Each higher perturbation expression contains 
many more terms than the one preceding it and 
even Xi contains more terms than is shown in equa­
tion 29. Two criteria were used in discarding 
terms to obtain the above equations. For x\ and 
Xi all terms tha t had values less than the value of 
Xo under the condition S0 > > eo (or £i£o > > £4^0) 
were discarded. Other terms went through max­
ima (or minima) and the values of these terms a t 
their maxima (or minima) were compared with x» 
and were discarded if small compared to xa- A 
similar procedure was used in discarding terms in 
pi and fa. 

In Fig. 4 x/e0 is plotted vs. t for two values of 
ki/ki'. in A ki/ki = 1 0 and in B ki/k4 = 0.1. The 
value of ki is the same as used in Fig. 1-3 and the 
values for k2 and k% are such as to keep the Michae­
lis constant of the substrate the same as for Fig. 
1-3 while still maintaining the equilibrium con­
s tant for the over-all reaction. To calculate the 
time course of x/eo as given by the steady-state ap­
proximation these equations were used 

x/e0 = 

(ki — k,)p 
klk3 + &2&4 

Wo + (k, — ki)p 

Wl) + ki + k3 + (ki — k,)p 

[kt + k3)(kikiSrj + kikg + kski) 

(33) 

(kik3 
In 

+ £2W2 

[ • -£]- e0t (34) 

Equation 33 is obtained from equation 16 by set­
ting x = 0 and equation 34 is obtained by sub­
sti tuting equation 33 into equation 17 and inte­
grating.22 For curve A the value of x calculated 
from X0 + (ki — h)xi + (ki — ki)2x<i agrees very 
closely with the steady-state solution while in 
curve B the agreement is not so good (the third per­
turbation term is needed in this case). I t appears 
tha t the steady-state approximation is very good 
for the fumarase reaction a t least when 0.1 ^ &1/&4 
^ 10. Furthermore the perturbation solution ap­
pears to converge very rapidly within this region. 

The equilibrium values of x and p obtained from 
the perturbation solution are 

p~ r ' L **s J + L ks J 
_ kjeosj •A [(kt - h)k3l" 

**'" »-0 L *^ J 
kihsg \ [(ki - k,)k3l 

ki(h + k3) ( ~>~ Ul(*2 + W J 
[{ki - h)k3-[ I 
LHk* + WJ > 

,fta LUk,. + K1J 

/ 

(35) 

+ 

k\kzso_ 

kiChi + k3) 

- h)k* CMS. 

Tf 

\(kj — ki)h\ 

kS 
< 1 (37) 

(22) R. A. Alberty, Advances in Enzymology, 17, 42 (1956). 
(23) The coefficient of the transient term in Po is always negligible 

compared to the coefficient of the other term when so ^> eo and was 
neglected here. 
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and 

|(fa - *i)fe.l 
\kt(kt + *i)l < l (38) 

the summations in equations 35 and 36 converge 
and yield 

X©q — 
kjkteost. 

kiktSo + kiht + ktki 

Poi ~ 
klksSt) 

klks -f- &2&4 

(39) 

(40) 

Equations 39 and 40 are the correct equilibrium 
expressions when so» e0. If k\ > ki the inequali­
ties 37 and 39 will always be satisfied and therefore 
the summations in equations 35 and 36 always 
converge to give the correct equilibrium expres­
sions. However when ki < ki the inequalities will 
not always be satisfied and then the perturbation 
solution is not always applicable. 

The first term in equation 35 is (xo)eq and the first 
term in equation 36 is (£o)eq; the second terms are 
(#i)eq and (^i)eq, etc. Thus by using particular 
values of the rate constants, s0 and e0 the number of 
perturbation terms needed to give any desired 
agreement with the correct value can be deter­
mined . In making the numerical calculations it ap­
peared that this was also a good criterion for deter­
mining the number of perturbation terms needed 
to make the time course of the over-all reaction 
agree with the steady state solution. 
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Fig. 4.—Plots of x/et, vs. t: Curve A was calculated using 
A, = 7.9 X 10» M-1 min.-1 , k2 = 6.58 X 10* min."1, kt = 
1.49 X 10 smin.- 1 , kt = 7.9 X 10' JIf"1 min.-1 , se = 10"4 M 
and en - 3 X 1O-10 M. Curve B was calculated using the 
same values for ki and S0 but with ks = 2.07 X 10* min. - 1 , 
kt = 4.67 X 10* min.-1 , kt = 7.9 X 10» JIf"1 min."1 and 
e0 = 1 0 _ u M. The first two perturbation terms were used 
in calculating the solid curve. The dashed curves were 
calculated using the steady-state assumption. 
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I t is shown that in comparisons of equilibrium constants with each other or of rate constants among a set of rate con­
stants, it is the intrinsic or "chemical" constants which should be compared and not the observed constants. These chemical 
constants, K&em (or £ehem), are related to the observed constants K (or k) by the relation: isTchem = K[K<,\ fehem = k/K^' 
where Kv and K *<r are the ratios of symmetry numbers for reactant and product species in equilibrium and chemical reaction, 
respectively. This leads to some interesting changes in the "relative" base strengths of amines. The symmetry corrections 
are derivable from statistical mechanics and are equivalent t o some of the more intuitive methods in current use. In the case 
of the Bronsted relation, correlating general acid-base catalytic behavior with acid strength, it leads to a consistent method 
of assigning symmetry corrections to both k and Ki0n- The need for such corrections in other "linear free-energy relation­
ships" is pointed out. 

Introduction 
Since the early success of BrSnsted and Pedersen3 

in correlating the catalytic rate constants of acids 
and bases with their ionization constants, it has 

(1) Visiting Research Fellow in Chemistry in the Division of Chem­
istry and Chemical Engineering. On sabbatical leave from the Chem­
istry Department, University of Southern California. 

(2) The author wishes to acknowledge his appreciation to the 
National Science Foundation for a Senior Post-Doctoral Fellowship 
which made possible the present work. 

(3) J. N. BrOnsted and K. Pedersen, Z. fhysik. Chem., 108, 18S 
(1924). 

become popular to extend this procedure to other 
reactions. Thus the Hammett4 treatment of the 
acidities of substituted benzene derivatives and 
their correlation with rate constants is a further 
example of a correlation which is now come to be 
known more generally as the "linear free energy" 
relationship. I t was early realized8'6 that such 
correlations offer ambiguities when species of 

(4) L. P. Hammett, Chem. Revs., 11, 125 (1935); Trans. Faraday 
Soc, 34, 166 (1938). 

(5) J. N. BrSnsted, Chem. Revs., », 322 (1928). 


